974 resultados para PGS (Photonic Glucose Sensor)


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Objectif : Déterminer la fiabilité et la précision d’un prototype d’appareil non invasif de mesure de glucose dans le tissu interstitiel, le PGS (Photonic Glucose Sensor), en utilisant des clamps glycémiques multi-étagés. Méthodes : Le PGS a été évalué chez 13 sujets avec diabète de type 1. Deux PGS étaient testés par sujet, un sur chacun des triceps, pour évaluer la sensibilité, la spécificité, la reproductibilité et la précision comparativement à la technique de référence (le Beckman®). Chaque sujet était soumis à un clamp de glucose multi-étagé de 8 heures aux concentrations de 3, 5, 8 et 12 mmol/L, de 2 heures chacun. Résultats : La corrélation entre le PGS et le Beckman® était de 0,70. Pour la détection des hypoglycémies, la sensibilité était de 63,4%, la spécificité de 91,6%, la valeur prédictive positive (VPP) 71,8% et la valeur prédictive négative (VPN) 88,2%. Pour la détection de l’hyperglycémie, la sensibilité était de 64,7% et la spécificité de 92%, la VPP 70,8% et la VPN : 89,7%. La courbe ROC (Receiver Operating Characteristics) démontrait une précision de 0,86 pour l’hypoglycémie et de 0,87 pour l’hyperglycémie. La reproductibilité selon la « Clark Error Grid » était de 88% (A+B). Conclusion : La performance du PGS était comparable, sinon meilleure que les autres appareils sur le marché(Freestyle® Navigator, Medtronic Guardian® RT, Dexcom® STS-7) avec l’avantage qu’il n’y a pas d’aiguille. Il s’agit donc d’un appareil avec beaucoup de potentiel comme outil pour faciliter le monitoring au cours du traitement intensif du diabète. Mot clés : Diabète, diabète de type 1, PGS (Photonic Glucose Sensor), mesure continue de glucose, courbe ROC, « Clark Error Grid».

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The screen printed electrochemical glucose sensor is developed suitable for revere iontophoresis (RI) application. Glucose oxidase is immobilized on screen printed sensor using crosslinking method. Electrochemical and material characterization studies are conducted on the developed sensor and the obtained results confirm the suitability of the developed sensor for RI application. The developed sensor is validated by conducting clinical investigations on 10 human subjects through RI. A correlation is established between the blood glucose and extracted glucose, and correlation is found to be 0.73. (C) 2015 The Electrochemical Society. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A novel nonenzymatic glucose sensor was developed based on the renewable Ni nanoparticle-loaded carbon nanofiber paste (NiCFP) electrode. The NiCF nanocomposite was prepared by combination of electrospinning technique with thermal treatment method. The scanning electron microscopy (SEM) and transmission electron microscopy (TEM) images showed that large amounts of spherical nanoparticles were well dispersed on the surface or embedded in the carbon nanofibers. And the nanoparticles were composed of Ni and NiO, as revealed by energy dispersive X-ray spectroscopy (EDX) and X-ray powder diffraction (XRD). In application to nonenzymatic glucose determination, the renewable NiCFP electrodes, which were constructed by simply mixing the electrospun nanocomposite with mineral oil, exhibited strong and fast amperometric response without being poisoned by chloride ions. Low detection limit of 1 mu M with wide linear range from 2 mu M to 2.5 mM (R = 0.9997) could be obtained.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A glassy carbon electrode (GCE) modified with palladium provides excellent electrocatalytic oxidation of hydrogen peroxide. When the electrolyte contains palladium chloride and glucose oxidase, the GCE can be modified by electrochemical codeposition at a given potential. The resulting modified surface was coated with a thin film of Nation to form a glucose sensor. Such a glucose sensor was successfully used in the flow-injection analysis of glucose with high stability and anti-poisoning ability. It gave a detection limit of 1 X 10(-7) M injected glucose, with a linear concentration range of 0.001-8 mM. There is no obvious interference from substances such as ascorbate and saccharides.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A glucose oxidase (GOD) electrode with ferrocene (Fc) used as an electron transfer mediator has been described. Using Nafion, Fc was modified on a glassy carbon (GC) electrode surface, and glucose oxidase was then immobilized on the Fc-Nafion film, forming a GOD-Fc-Nafion enzyme electrode. The preparation method was quite simple and rapid. The enzyme electrode showed a reversible reaction of the redox couple (Fc+/Fc), used in a biosensor system, displayed a sensitive catalytic current response (response time was less than 20 s) on variation of the glucose concentration, with a wide linear range up to 16 mM and with good repeatability. The enzyme electrode showed almost no deterioration over the course of three weeks. There was little or no interference from electro-active anions, such as ascorbic acid, to the determination of glucose based on Nafion film and lower oxidizing potentials of the enzyme electrode.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

BACKGROUND: The bioluminescence technique was used to quantify the local glucose concentration in the tissue surrounding subcutaneously implanted polyurethane material and surrounding glucose sensors. In addition, some implants were coated with a single layer of adipose-derived stromal cells (ASCs) because these cells improve the wound-healing response around biomaterials. METHODS: Control and ASC-coated implants were implanted subcutaneously in rats for 1 or 8 weeks (polyurethane) or for 1 week only (glucose sensors). Tissue biopsies adjacent to the implant were immediately frozen at the time of explant. Cryosections were assayed for glucose concentration profile using the bioluminescence technique. RESULTS: For the polyurethane samples, no significant differences in glucose concentration within 100 μm of the implant surface were found between bare and ASC-coated implants at 1 or 8 weeks. A glucose concentration gradient was demonstrated around the glucose sensors. For all sensors, the minimum glucose concentration of approximately 4 mM was found at the implant surface and increased with distance from the sensor surface until the glucose concentration peaked at approximately 7 mM at 100 μm. Then the glucose concentration decreased to 5.5-6.5 mM more than 100 μmm from the surface. CONCLUSIONS: The ASC attachment to polyurethane and to glucose sensors did not change the glucose profiles in the tissue surrounding the implants. Although most glucose sensors incorporate a diffusion barrier to reduce the gradient of glucose and oxygen in the tissue, it is typically assumed that there is no steep glucose gradient around the sensors. However, a glucose gradient was observed around the sensors. A more complete understanding of glucose transport and concentration gradients around sensors is critical.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

An optical window model for the rodent dorsum was used to perform chronic and quantitative intravital microscopy and laser Doppler flowmetry of microvascular networks adjacent to functional and non-functional glucose sensors. The one-sided configuration afforded direct, real-time observation of the tissue response to bare (unmodified, smooth surface) sensors and sensors coated with porous poly-L-lactic acid (PLLA). Microvessel length density and red blood cell flux (blood perfusion) within 1 mm of the sensors were measured bi-weekly over 2 weeks. When non-functional sensors were fully implanted beneath the windows, the porous coated sensors had two-fold more vasculature and significantly higher blood perfusion than bare sensors on Day 14. When functional sensors were implanted percutaneously, as in clinical use, no differences in baseline current, neovascularization, or tissue perfusion were observed between bare and porous coated sensors. However, percutaneously implanted bare sensors had two-fold more vascularity than fully implanted bare sensors by Day 14, indicating the other factors, such as micromotion, might be stimulating angiogenesis. Despite increased angiogenesis adjacent to percutaneous sensors, modest sensor current attenuation occurred over 14 days, suggesting that factors other than angiogenesis may play a dominant role in determining sensor function.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Inflammation and the formation of an avascular fibrous capsule have been identified as the key factors controlling the wound healing associated failure of implantable glucose sensors. Our aim is to guide advantageous tissue remodeling around implanted sensor leads by the temporal release of dexamethasone (Dex), a potent anti-inflammatory agent, in combination with the presentation of a stable textured surface.

First, Dex-releasing polyurethane porous coatings of controlled pore size and thickness were fabricated using salt-leaching/gas-foaming technique. Porosity, pore size, thickness, drug release kinetics, drug loading amount, and drug bioactivity were evaluated. In vitro sensor functionality test were performed to determine if Dex-releasing porous coatings interfered with sensor performance (increased signal attenuation and/or response times) compared to bare sensors. Drug release from coatings monitored over two weeks presented an initial fast release followed by a slower release. Total release from coatings was highly dependent on initial drug loading amount. Functional in vitro testing of glucose sensors deployed with porous coatings against glucose standards demonstrated that highly porous coatings minimally affected signal strength and response rate. Bioactivity of the released drug was determined by monitoring Dex-mediated, dose-dependent apoptosis of human peripheral blood derived monocytes in culture.

The tissue modifying effects of Dex-releasing porous coatings were accessed by fully implanting Tygon® tubing in the subcutaneous space of healthy and diabetic rats. Based on encouraging results from these studies, we deployed Dex-releasing porous coatings from the tips of functional sensors in both diabetic and healthy rats. We evaluated if the tissue modifying effects translated into accurate, maintainable and reliable sensor signals in the long-term. Sensor functionality was accessed by continuously monitoring glucose levels and performing acute glucose challenges at specified time points.

Sensors treated with porous Dex-releasing coatings showed diminished inflammation and enhanced vascularization of the tissue surrounding the implants in healthy rats. Functional sensors with Dex-releasing porous coatings showed enhanced sensor sensitivity over a 21-day period when compared to controls. Enhanced sensor sensitivity was accompanied with an increase in sensor signal lag and MARD score. These results indicated that Dex-loaded porous coatings were able to elicit a favorable tissue response, and that such tissue microenvironment could be conducive towards extending the performance window of glucose sensors in vivo.

The diabetic pilot animal study showed differences in wound healing patters between healthy and diabetic subjects. Diabetic rats showed lower levels of inflammation and vascularization of the tissue surrounding implants when compared to their healthy counterparts. Also, functional sensors treated with Dex-releasing porous coatings did not show enhanced sensor sensitivity over a 21-day period. Moreover, increased in sensor signal lag and MARD scores were present in porous coated sensors regardless of Dex-loading when compared to bare implants. These results suggest that the altered wound healing patterns presented in diabetic tissues may lead to premature sensor failure when compared to sensors implanted in healthy rats.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Recent evidence suggests the existence of a hepatoportal vein glucose sensor, whose activation leads to enhanced glucose use in skeletal muscle, heart, and brown adipose tissue. The mechanism leading to this increase in whole body glucose clearance is not known, but previous data suggest that it is insulin independent. Here, we sought to further determine the portal sensor signaling pathway by selectively evaluating its dependence on muscle GLUT4, insulin receptor, and the evolutionarily conserved sensor of metabolic stress, AMP-activated protein kinase (AMPK). We demonstrate that the increase in muscle glucose use was suppressed in mice lacking the expression of GLUT4 in the organ muscle. In contrast, glucose use was stimulated normally in mice with muscle-specific inactivation of the insulin receptor gene, confirming independence from insulin-signaling pathways. Most importantly, the muscle glucose use in response to activation of the hepatoportal vein glucose sensor was completely dependent on the activity of AMPK, because enhanced hexose disposal was prevented by expression of a dominant negative AMPK in muscle. These data demonstrate that the portal sensor induces glucose use and development of hypoglycemia independently of insulin action, but by a mechanism that requires activation of the AMPK and the presence of GLUT4.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A new enzymeless glucose sensor has been fabricated via electrospinning technology and subsequent calcination. The morphology and structure of the as-prepared nanofibers have been characterized by scanning electron microscopy (SEM), transmission electron microscopy (TEM), and X-ray diffraction (XRD). The electrocatalytic oxidation of glucose in alkaline medium at nickel oxide modified glassy carbon electrodes has been investigated. The modified electrodes offer excellent electrocatalytic activity toward the glucose oxidation at low positive potential (0.3 V). Glucose has been determined chronoamperometrically at the surface of NiO nanofibers modified electrode in 0.5 mM NaOH. Under the optimized condition, the calibration curve is linear in the concentration range of 2 × 10−3 mM∼1 mM, and 1 mM∼9.5 mM. The detection limit (signal-to-noise 3) and response time are 3.394 × 10−6 M and 2 s, respectively. The NiO electrospun nanofibers is easy to prepare and feasible in economy. The modified electrode is steady and can be used repeatedly, so it is reasonable to expect its broad use in non-enzymatic glucose sensor.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Expression of glucokinase in hepatocytes and pancreatic 6-cells is of major physiologic importance to mammalian glucose homeostasis. Liver glucokinase catalyzes the first committed step in the disposal of glucose, and beta-cell glucokinase catalyzes a rate-limiting step required for glucose-regulated insulin release. The present study reports the expression of glucokinase in rat glucagon-producing alpha-cells, which are negatively regulated by glucose. Purified rat alpha-cells express glucokinase mRNA and protein with the same transcript length, nucleotide sequence, and immunoreactivity as the beta-cell isoform. Glucokinase activity accounts for more than 50% of glucose phosphorylation in extracts of alpha-cells and for more than 90% of glucose utilization in intact cells. The glucagon-producing tumor MSL-G-AN also contained glucokinase mRNA, protein, and enzymatic activity. These data indicate that glucokinase may serve as a metabolic glucose sensor in pancreatic alpha-cells and, hence, mediate a mechanism for direct regulation of glucagon release by extracellular glucose. Since these cells do not express Glut2, we suggest that glucose sensing does not necessarily require the coexpression of Glut2 and glucokinase.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We demonstrate a novel glucose sensor based on an optical fiber grating with an excessively tilted index fringe structure and its surface modified by glucose oxidase (GOD). The aminopropyltriethoxysilane (APTES) was utilized as binding site for the subsequent GOD immobilization. Confocal microscopy and fluorescence microscope were used to provide the assessment of the effectiveness in modifying the fiber surface. The resonance wavelength of the sensor exhibited red-shift after the binding of the APTES and GOD to the fiber surface and also in the glucose detection process. The red-shift of the resonance wavelength showed a good linear response to the glucose concentration with a sensitivity of 0.298nm(mg/ml)-1 in the very low concentration range of 0.0∼3.0mg/ml. Compared to the previously reported glucose sensor based on the GOD-immobilized long period grating (LPG), the 81° tilted fiber grating (81°-TFG) based sensor has shown a lower thermal cross-talk effect, better linearity and higher Q-factor in sensing response. In addition, its sensitivity for glucose concentration can be further improved by increasing the grating length and/or choosing a higher-order cladding mode for detection. Potentially, the proposed techniques based on 81°-TFG can be developed as sensitive, label free and micro-structural sensors for applications in food safety, disease diagnosis, clinical analysis and environmental monitoring.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A high sensitive glucose sensor using microfiber based Mach-Zehnder interferometer (MZI) is proposed. Microfiber is firstly immobilized with glucose oxidase (GOD) and then employed as sensing probe in MZI. By tracking the shift of the interference spectrum, a high sensitivity up to 2.46nm. (mg/ml)-1 is achieved at the glucose concentration range of 0-3mg/ml.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

New methods of nuclear fuel and cladding characterization must be developed and implemented to enhance the safety and reliability of nuclear power plants. One class of such advanced methods is aimed at the characterization of fuel performance by performing minimally intrusive in-core, real time measurements on nuclear fuel on the nanometer scale. Nuclear power plants depend on instrumentation and control systems for monitoring, control and protection. Traditionally, methods for fuel characterization under irradiation are performed using a “cook and look” method. These methods are very expensive and labor-intensive since they require removal, inspection and return of irradiated samples for each measurement. Such fuel cladding inspection methods investigate oxide layer thickness, wear, dimensional changes, ovality, nuclear fuel growth and nuclear fuel defect identification. These methods are also not suitable for all commercial nuclear power applications as they are not always available to the operator when needed. Additionally, such techniques often provide limited data and may exacerbate the phenomena being investigated. This thesis investigates a novel, nanostructured sensor based on a photonic crystal design that is implemented in a nuclear reactor environment. The aim of this work is to produce an in-situ radiation-tolerant sensor capable of measuring the deformation of a nuclear material during nuclear reactor operations. The sensor was fabricated on the surface of nuclear reactor materials (specifically, steel and zirconium based alloys). Charged-particle and mixed-field irradiations were both performed on a newly-developed “pelletron” beamline at Idaho State University's Research and Innovation in Science and Engineering (RISE) complex and at the University of Maryland's 250 kW Training Reactor (MUTR). The sensors were irradiated to 6 different fluences (ranging from 1 to 100 dpa), followed by intensive characterization using focused ion beam (FIB), transmission electron microscopy (TEM) and scanning electron microscopy (SEM) to investigate the physical deformation and microstructural changes between different fluence levels, to provide high-resolution information regarding the material performance. Computer modeling (SRIM/TRIM) was employed to simulate damage to the sensor as well as to provide significant information concerning the penetration depth of the ions into the material.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This thesis describes two separate projects. The first is a theoretical and experimental investigation of surface acoustic wave streaming in microfluidics. The second is the development of a novel acoustic glucose sensor. A separate abstract is given for each here. Optimization of acoustic streaming in microfluidic channels by SAWs Surface Acoustic Waves, (SAWs) actuated on flat piezoelectric substrates constitute a convenient and versatile tool for microfluidic manipulation due to the easy and versatile interfacing with microfluidic droplets and channels. The acoustic streaming effect can be exploited to drive fast streaming and pumping of fluids in microchannels and droplets (Shilton et al. 2014; Schmid et al. 2011), as well as size dependant sorting of particles in centrifugal flows and vortices (Franke et al. 2009; Rogers et al. 2010). Although the theory describing acoustic streaming by SAWs is well understood, very little attention has been paid to the optimisation of SAW streaming by the correct selection of frequency. In this thesis a finite element simulation of the fluid streaming in a microfluidic chamber due to a SAW beam was constructed and verified against micro-PIV measurements of the fluid flow in a fabricated device. It was found that there is an optimum frequency that generates the fastest streaming dependent on the height and width of the chamber. It is hoped this will serve as a design tool for those who want to optimally match SAW frequency with a particular microfluidic design. An acoustic glucose sensor Diabetes mellitus is a disease characterised by an inability to properly regulate blood glucose levels. In order to keep glucose levels under control some diabetics require regular injections of insulin. Continuous monitoring of glucose has been demonstrated to improve the management of diabetes (Zick et al. 2007; Heinemann & DeVries 2014), however there is a low patient uptake of continuous glucose monitoring systems due to the invasive nature of the current technology (Ramchandani et al. 2011). In this thesis a novel way of monitoring glucose levels is proposed which would use ultrasonic waves to ‘read’ a subcutaneous glucose sensitive-implant, which is only minimally invasive. The implant is an acoustic analogy of a Bragg stack with a ‘defect’ layer that acts as the sensing layer. A numerical study was performed on how the physical changes in the sensing layer can be deduced by monitoring the reflection amplitude spectrum of ultrasonic waves reflected from the implant. Coupled modes between the skin and the sensing layer were found to be a potential source of error and drift in the measurement. It was found that by increasing the number of layers in the stack that this could be minimized. A laboratory proof of concept system was developed using a glucose sensitive hydrogel as the sensing layer. It was possible to monitor the changing thickness and speed of sound of the hydrogel due to physiological relevant changes in glucose concentration.